How does fishing alter marine populations and ecosystems sensitivity to climate?
نویسندگان
چکیده
Evidence has accumulated that climate variability influences the state and functioning of marine ecosystems. At the same time increasing pressure from exploitation and other human activities has been shown to impact exploited and non-exploited species and potentially modify ecosystem structure. There has been a tendency among marine scientists to pose the question as a dichotomy, i.e., whether (1) “natural” climate variability or (2) fishery exploitation bears the primary responsibility for population declines in fish populations and the associated ecosystem changes. However, effects of both climate and exploitation are probably substantially involved in most cases. More importantly, climate and exploitation interact in their effects, such that climate may cause failure in a fishery management scheme but that fishery exploitation may also disrupt the ability of a resource population to withstand, or adjust to, climate changes. Here, we review how exploitation, by altering the structure of populations and ecosystems, can modify their ability to respond to climate. The demographic effects of fishing (removal of large-old individuals) can have substantial consequences on the capacity of populations to buffer climate variability through various pathways (direct demographic effects, effects on migration, parental effects). In a similar way, selection of population sub-units within metapopulations may also lead to a reduction in the capacity of populations to withstand climate variability and change. At the ecosystem level, reduced complexity by elimination of species, such as might occur by fishing, may be destabilizing and could lead to reduced resilience to perturbations. Differential exploitation of marine resources could also promote increased turnover rates in marine ecosystems, which would exacerbate the effects of environmental changes. Overall (and despite the specificities of local situations) reduction in marine diversity at the individual, population and ecosystem levels will likely lead to a reduction in the resilience and an increase in the response of populations and ecosystems to future climate variability and change. Future management schemes will have to consider the structure and functioning of populations and ecosystems in a wider sense in order to maximise the ability of marine fauna to adapt to future climates.
منابع مشابه
Impact of climate and fisheries on sub-Arctic stocks
Understanding the drivers (internal and external) that determine the productivity of marine ecosystems is challenging. For example, the correct estimate of recruitment is essential to estimate fish stock abundance. In this Theme Section, 5 papers explore the effect of fishing and climate on population structure across sub-Arctic ecosystems. The studies focus on how temperatureand fishing-induce...
متن کاملEffect of climate change factors on catfish stocks in the Persian Gulf and Gulf of Oman, Iranian waters
Background and Objectives: ?????? Methods: ?????? Findings: ?????? Conclusion: ????? One way to predict how marine ecosystems will react to climate change is to use the time series data. Considering the various economic and ecological values of marine species, and that the demographic dynamics of these species depend on two factors of climate variability and human activities, it was deci...
متن کاملClimate change impacts on the biophysics and economics of world fisheries
449 Gross revenues from marine capture fisheries worldwide are estimated at between US$80 billion and 85 billion annually1–3. As a primary industry4, fisheries support the wellbeing of nations through direct employment in fishing, processing and ancillary services amounting to between US$220 billion and 235 billion annually in 2003 (ref. 5). Globally, fish provide nearly three billion people wi...
متن کاملThe effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems
The impact of fishing on chondrichthyan stocks around the world is currently the focus of considerable international concern. Most chondrichthyan populations are of low productivity relative to teleost fishes, a consequence of their different life-history strategies. This is reflected in the poor record of sustainability of target shark fisheries. Most sharks and some batoids are predators at, ...
متن کاملAssessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models
We synthesized available information from ecological models at local and regional scales to obtain a global picture of the trophic position and ecological role of squids in marine ecosystems. First, static food-web models were used to analyze basic ecological parameters and indicators of squids: biomass, production, consumption, trophic level, omnivory index, predation mortality diet, and the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007